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Fig. 1: Left: User personalizing the robot’s behavior through the Low-Granularity Interface, with the “surfer dude” persona and
a “normal” stopping distance selected. Right: Robot executing the interaction scenario, reflecting the user’s customizations.

Abstract—Perceived social agency–the perception of a robot
as an autonomous and intelligent social other–is important for
fostering meaningful and engaging human-robot interactions.
While end-user programming (EUP) enables users to customize
robot behavior, enhancing usability and acceptance, it can also
potentially undermine the robot’s perceived social agency. This
study explores the trade-offs between user control over robot
behavior and preserving the robot’s perceived social agency, and
how these factors jointly impact user experience. We conducted
a between-subjects study (N = 57) where participants customized
the robot’s behavior using either a High-Granularity Interface
with detailed block-based programming, a Low-Granularity
Interface with broader input-form customizations, or no EUP
at all. Results show that while both EUP interfaces improved
alignment with user preferences, the Low-Granularity Interface
better preserved the robot’s perceived social agency and led to
a more engaging interaction. These findings highlight the need
to balance user control with perceived social agency, suggesting
that moderate customization without excessive granularity may
enhance the overall satisfaction and acceptance of robot products.

Index Terms—end-user programming; personalization; HRI

I. INTRODUCTION

With the proliferation of large language models (LLMs),
robot products with social and conversational capabilities are
becoming increasingly common. The vision of human users
forming social bonds with their robot products is increasingly
realized in various contexts, such as providing companionship
for older adults [1]–[3], supporting adolescent education [4],
[5], and even facilitating social interactions between people
[6], [7]. While not every user may see their robot products
as social–especially those designed for specific utilitarian
functions (e.g., robot vacuums)–prior work has shown that
many users do view even utility-focused robots in a social
manner, akin to a pet or even a family member [8], [9]. It
is not difficult to envision a future where social interactions
between humans and robots are commonplace both in public
and at home.

Given this context, it is increasingly important to consider



a robot’s perceived social agency, a term we use to describe
people’s perceptions of a robot as a “social other,” including
perceptions of the robot’s autonomy, agency, intelligence, so-
cial intelligence, and social presence. Perceived social agency
is important to the success of robots in everyday settings [10]–
[12]. Research in the field of Human-Robot Interaction (HRI)
has highlighted that users are more likely to accept and
engage with robots that they perceive as socially intelligent
and possessing a social presence beyond utilitarian function-
alities [13]–[15]. Perceived agency, autonomy and intelligence
are crucial for robots to be seen not just as tools, but as a
social other in daily activities [15], [16], often leading to
more enjoyable human-robot interactions [17], [18].

In addition to the emerging importance of perceived social
agency in robot products, the importance of tailoring the
behavior of robot products to individual user preferences
cannot be overstated. Adherence to user preferences is not only
a matter of functional efficiency but also plays a significant
role in fostering user acceptance and long-term engagement
with robots [19]–[23]. Being able to personalize a robot’s
behavior enhances a user’s satisfaction by making interactions
more intuitive and aligned with their individual needs, which
is particularly important in domains such as healthcare, edu-
cation, and personal assistance [19], [24], [25].

One potential solution to ensure that robots behave accord-
ing to user preferences is enabling end-user programming
(EUP) [26], [27]. However, this customization could come
with trade-offs in the robot’s perceived social agency. Robot
product designers and story writers invest considerable time
and effort into crafting behaviors that make up the robot’s
character and personality [28]. For example, Amazon’s Astro
robot is designed to be endearing and pet-like [29], while
robots developed by companies like Disney [30], [31] are
imbued with specific characters, personalities, and backstories.
Allowing end-users to alter the robot’s behavior could disrupt
these carefully designed attributes, potentially diminishing
the robot’s social agency and, consequently, its appeal and
effectiveness [16].

Therefore, the challenge in designing EUP interfaces for
such robots involves balancing the need for user preference ad-
herence with the preservation of robot social agency. Granular
control through detailed interfaces can enhance adherence by
offering flexibility and precision [32], but may lead to the robot
being seen as overly “pre-programmed,” reducing its social
agency. Conversely, eliminating customization could enhance
social agency but risk misalignment with user preferences.
Achieving enjoyable interactions likely depends on striking
a balance: aligning the robot’s behavior with user preferences
while maintaining its perceived social agency.

This work examines the trade-offs in EUP interface granu-
larity, focusing on how customization levels impact adherence
to user preferences, perceptions of social agency, and over-
all user experience. We conducted a between-subjects study
comparing three approaches: a High-Granularity Interface
with block-based programming, a Low-Granularity Interface
with broader input-form customizations, and a No End-User

Programming condition where customization was unavailable.
By evaluating user interactions with a home assistant robot,
we aim to identify the approach that best balances user control
and social agency for a satisfying and effective experience.

II. BACKGROUND

A. End-User Robot Programming

End-User Programming (EUP) allows individuals without
specialized programming skills to customize and control robot
behaviors based on their specific needs [26], [33]. Personaliz-
ing robot actions enhances user engagement and satisfaction
[34]–[37] and improves perceptions of robot effectiveness and
helpfulness [25], [38], [39]. Various EUP methods have been
developed to facilitate robot customization, including Robot
Learning from Demonstration (LfD), which enables robots to
learn skills without explicit programming by users and can be
integrated into more complex behaviors [40]–[44]. Augmented
Reality (AR) and Mixed Reality (MR) interfaces support
gestures and direct interaction, reducing context switching
[45]–[48], while speech and natural language are often com-
bined with other modalities for EUP [45], [49]–[51]. Tangible
programming, involving the manipulation of physical objects,
is often designed for children [52]–[56].

Visual programming has become a prevalent EUP method
due to its intuitive and accessible nature [26], [57], [58].
These interfaces allow users to create robot programs by
manipulating graphical elements such as blocks [34], [58]–
[61], icons [52], [55], flow diagrams [25], and behavior trees
[36], [37], [62]. Block-based systems like Blockly [61], [63]
and Scratch [58] are particularly popular for their intuitive
and user-friendly drag-and-drop design, enabling users to build
complex robot behaviors through simple actions [59] and are
often as accurate as more complex, code-based alternatives
[34]. Beyond block-based programming, visual interfaces also
incorporate graphical UI components such as buttons, input-
forms, menus, and sliders [35], [38], [64], [65] to gather user
inputs. In this work, we compare user perceptions of a robot
when customized using a highly detailed block-based EUP
interface versus a low-granularity interface with simpler UI
elements like sliders and buttons, as no prior work to our
knowledge has systematically compared these EUP paradigms.

B. Perceived Social Agency in Human-Robot Interaction

We use the term “perceived social agency” to the percep-
tion that a robot can perform social actions–behaviors that
affirm or threaten the “face” of another, as conceptualized by
politeness theory [10], [66]. This perception, particularly at
the user’s level of abstraction (LoA), encompasses qualities
like interactivity, autonomy, and adaptability [10], [67], [68],
which make robots appear socially intelligent and capable of
dynamic engagement. Interactivity enables bidirectional com-
munication, autonomy suggests independent decision-making,
and adaptability mirrors human-like responsiveness, all con-
tributing to the perception of a robot as a social other [67].
Users are more likely to engage with robots they perceive as



Fig. 2: Users of the High-Granularity Interface build their
programs by dragging and dropping robot behavior blocks
and selecting customization’s of the robot’s behavior via drop-
downs and text-entry boxes.

socially agentic, which enhances trust, enjoyment, and long-
term interaction [13], [15], [17]. For example, Snackbot [69]
illustrates how social agency can foster deeper engagement
through personalized, context-aware interactions, with socially
responsive robots often perceived as more empathetic and
human-like [70]. Despite the importance of perceived social
agency to user engagement, no work to our knowledge has
examined how perceived social agency can be balanced with
preference adherence on overall user experience.

III. SYSTEM DESIGN

In this section, we present two distinct end-user program-
ming (EUP) interfaces developed to control the behavior of
the Stretch Research Edition 1 robot, with varying levels of
granularity. Participants used the interfaces to customize how
they wanted their robot assistant to interact with them upon
returning home from work.

A. High-Granularity EUP Interface

The High-Granularity EUP Interface (see Figure 2) lever-
ages the widely used block-based Blockly programming envi-
ronment [63] due to its robustness and prevalence in current
robot products [34], [58]–[61]. This interface allows for pre-
cise control of robot actions through programmable blocks.

In our implementation, each robot action during the inter-
action (e.g., stopping at a specific distance) corresponds to
a single block, enabling participants to configure the robot’s
behavior at the task level (e.g., “Robot takes my bag”) without
needing to combine multiple lower-level commands like lower,
extend, or retract the arm. This approach was intended to
reduce participant fatigue and the time needed to program.

The High-Granularity Interface included a variety of blocks
to enable users to customize each feature for each individual
action within the interaction sequence, allowing it to be much
more expressive in tailoring the robot’s behavior to the user’s
exact preferences (see Figure 2 for examples). The primary
types of blocks available to users were:

• Mobile Base Movement Blocks: Specify the robot’s
destination (e.g., user or snack bar), movement speed,
and how far it should stop from a target. Users could

also customize the robot’s verbal explanations of its own
actions during execution.

• Conversation Blocks: Customize social interactions by
defining scenarios (e.g., “Robot greets me in the fol-
lowing way:”) and input exact phrases or messages for
the robot to deliver, tailoring the interaction to their
preferences.

• Task Blocks: Represent specific tasks (e.g., “Robot takes
my bag”) with limited customization, except for the news
update block, where users could choose genres and topics.

• Outer Bracket For Vocal Customization: Adjust the
robot’s voice and speech pace, with changes applied
across all applicable blocks within the bracket.

Users submitted their customizations via a button at the
bottom of the interface. A sample of the full interface is
available in the supplemental documents.

B. Low-Granularity EUP Interface

The Low-Granularity Interface serves as a middle ground
between no customization and the detailed controls offered by
the High-Granularity Interface. It simplifies the customization
process using sliders, buttons, and selectors for broad, macro-
level adjustments (see Figure 1) while still allowing the users
to customize the same set of features as that of the High-
Granularity EUP Interface. Customizable features include:

• Movement Speed: Adjusts the robot’s movement speed
using a 5-point slider.

• Talking Speed: Controls how fast the robot speaks using
a 5-point slider.

• Stopping Distance: Sets the distance at which the robot
stops when approaching a target via a 5-point slider.

• Robot Persona: Selects one of 11 preset vocal personas
(e.g., surfer dude, butler, robot) using clickable icons with
text labels.

• Explainability of Robot Behavior: Chooses from None,
Minimal, or Full explanations of robot actions via but-
tons.

• Ambient Movement: Decides whether the robot stays
still or sways while talking, selectable via buttons.

• Current Events: Selects the news topic (e.g., sports) the
robot will discuss, chosen via buttons.

This interface offers broad adjustments that apply across
the entire interaction sequence, emphasizing ease of use over
detailed customization.

C. Back End Implementation

We designed our backend to be mostly autonomous, where
a human operator was only involved to signal the robot
when to move on to the next task and adjust the mobile
base when needed to help the robot achieve its objective.
Once initiated, the robot performed tasks autonomously, using
ARUCO tags and YOLO-based object detection for naviga-
tion, while the Intel RealSense camera’s depth sensor managed
stopping distances. Speech transcription and vocal interactions
were powered by Whisper-1 and GPT-4, which transcribed
participant utterances and generated context-aware responses



Fig. 3: Participants were asked to imagine that they are returning home from work. This is how the interaction with the robot
assistant, Stretch, unfolded. The interaction can be roughly broken down into four stages.

tailored to user-selected vocal profiles. To maintain consis-
tency in the interaction flow, GPT-4 responses were tightly
constrained with context-specific prompts, character guidelines
(see supplemental documents for our GPT-4 prompts), and a
temperature setting of 0 to minimize response variability. In
the Low-Granularity Interface and No EUP conditions, GPT-
4 was used to rephrase scripted dialogues to fit the robot’s
selected robot persona (e.g., “Your potato chips are here, enjoy
the gentle crunch and a moment of peace and tranquility”
for a “yoga woman” persona) while grounding responses in
the ongoing conversation context. In the High-Granularity
Interface condition, GPT-4-generated scripts were limited to
news updates, with the rest of the interaction strictly defined
by user specifications.

IV. METHODS

We conducted a between-subjects study where participants
were randomly placed into one of three experimental condi-
tions differentiated by how they programmed the Stretch robot:
(1) the High-Granularity Interface Condition (see Section
III-A), (2) the Low-Granularity Interface Condition (see
Section III-B), or (3) the No EUP Condition. This study was
approved by the University of Chicago’s Institutional Review
Board (Protocol IRB23-1720).

A. Hypotheses

Personalization through end-user programming (EUP) can
enhance the alignment of robot behavior with individual user
preferences [23], [26], [27], which fosters user acceptance
and satisfaction [19]–[22]. The complexity and granularity of
control in EUP interfaces often increase in proportion to the
level of expression and customization they support [71], [72].
Therefore, we hypothesized:

• H1 (Preference Adherence) – End-user programming
will result in robot behavior that more closely adheres
to user preferences, with the High-Granularity (HG)
Interface providing the most alignment compared to the
Low-Granularity (LG) Interface. We predict that users’
preference adherence will follow HG > LG > No EUP.

However, the level of control afforded by EUP can alter the
perceived autonomy and social capabilities of the robot, shift-

ing the Level of Abstraction (LoA) from the user’s perspective
to something closer to a developer’s viewpoint [10], [68]. This
shift may compromise the robot’s perceived social agency—a
key aspect for robots to be viewed as social entities rather
than mere tools, enhancing enjoyment and interaction quality
in daily activities [15]–[18]—by making its behavior appear
as less of a social other and more of a controllable tool. As
such, we hypothesized that:

• H2 (Perceived Social Agency) – Increasing the EUP
interface’s granularity of control will decrease users’ per-
ception of the robot’s social agency. We predict that the
robot’s perceived social agency will follow No EUP >
LG > HG.

Ultimately, the balance between customization granularity
and social agency preservation plays a substantial role in
shaping the overall user experience. While high customization
can improve the robot’s adherence to user preferences, it may
also lead to a less engaging and enjoyable interaction if the
robot is perceived less as a social other. Conversely, too little
customization might maintain social agency but fail to meet
individual user needs, suggesting that a balanced approach
could yield the best overall experience:

• H3 (Overall UX) – The Low-Granularity Interface will
offer the best overall user experience compared to the
High-Granularity Interface and No End-User Program-
ming conditions: LG > No EUP and LG > HG.

B. Human Robot Interaction Scenario

We designed a realistic “returning home from work” sce-
nario to simulate relatable daily interactions that could benefit
from personalized robot behaviors. The scenario consists of
four stages (see Figure 3):

• Stage 1: Welcome Home – The robot greets the partic-
ipant upon their entry into the “living room”, offers to
take their bag, and directs them to sit while it puts the
bag away.

• Stage 2: Unpack Day – The robot initiates a brief con-
versation, asking about the participant’s day and sharing
an anecdote about its own.



• Stage 3: Snack – The robot offers a choice between Rice
Krispies and Potato Chips, retrieves the selected snack,
and delivers it.

• Stage 4: Entertainment – The robot provides a 1-2
minute update on current events, with topics chosen based
on participant preferences (or pre-determined in the No
EUP condition).

Fig. 4: After the first customization and interaction, partici-
pants returned to the EUP interface for a second time to up-
date their customizations before going through the interaction
again. Participants finished with a post-experiment survey.

C. Protocol

Participants began by reviewing a consent form and were
introduced to their assigned EUP interface with an accompa-
nying instruction manual. In the High-Granularity condition,
they followed step-by-step instructions to program the robot
for tasks aligned with the four stages of the interaction scenario
(Section IV-B), customizing the robot’s behavior to fit their
ideal home assistant interaction. Low-Granularity participants
received an interface manual and a brief overview of the
upcoming interaction, while No EUP participants used a
simple interface to enter their name. To minimize the impact
of any single robot vocal persona in the No EUP condition,
we rotated through 11 personas evenly across participants.

After programming, participants interacted with the robot
in a staged living room setting for about 10 minutes, then
returned to the interface to make any desired adjustments, now
that they had seen how their customizations translated into
tangible expressions in the robot’s behavior. Participants in the
No EUP condition submitted their name again, using the same
simple interface. All participants then interacted with the robot
for a second time (see Figure 4). We had participants complete
the task twice to simulate real-world usage, where users
program the robot, interact with it, and then make adjustments
based on their experience. This allowed participants to refine
their settings and observe how their changes impacted the
robot’s behavior in a second interaction. Programming times
varied: participants in the High-Granularity condition took an
average of 17.55 minutes (SD = 4.62) initially and 5.76
minutes (SD = 3.30) for adjustments, while those using
the Low-Granularity Interface took under 2 minutes for both
initial programming and adjustments. The study concluded
with a post-experiment survey, taking approximately one hour.
Participants were compensated $20 USD.

D. Measures

Participants completed a post-experiment survey to assess
various aspects of their interaction with the robot (See supple-
mental documents for exact questionnaire items).

1) Adherence to User Preferences: Adherence to user pref-
erences was evaluated using items such as how well the robot’s
behavior aligned with participants’ expectations and the ease
of modifying its actions. Responses were on a 7-point Likert
scale from 1 (Strongly Disagree) to 7 (Strongly Agree), with
a high internal consistency (Cronbach’s α = 0.80).

2) Perceived Social Agency: Perceived social agency was
measured through the following constructs:

• Autonomy: Assessed using the concept of non-
deterministic autonomy, defined by Kim et al. [73] as the
degree to which a robot’s behavior is not specified prior
to run-time, via a 7-point Likert scale from 1 (Strongly
Disagree) to 7 (Strongly Agree).

• Perceived Agency: Measured using the 13-item Percep-
tion of Agency scale by Trafton et al. [74].

• Social Presence: Evaluated using the 17-item Social
Presence scale by Chen et al. [75].

• Social Intelligence: Assessed using the Perceived Social
Intelligence Scales (short form) by Barchard et al. [76].

• Perceived Intelligence: Measured via the Godspeed Per-
ceived Intelligence subscale [77].

3) Overall User Experience: Overall user experience en-
compassed enjoyment, satisfaction with the interface, the
desire to have the system at home, and engagement level, rated
on a 7-point Likert scale. Responses were aggregated into an
overall user experience score (Cronbach’s α = 0.90).

4) Open-ended Questions: Participants were asked open-
ended questions such as, “How confident do you feel in
making changes using the computer interface” and “Describe
your interaction with the robot.” We conducted qualitative
analysis with two independent coders on the responses related
to confidence (coded into “Yes, confident,” “No, not confi-
dent,” or “Mixed, including non-answers.”), achieving high
inter-coder reliability (Cohen’s κ = 0.86).

E. Participants

A total of 75 participants were recruited to participate in the
study, each randomly assigned to an experimental condition.
We excluded 18 from our analysis due to participant non-
compliance or substantial hardware/software failures (e.g.,
robot running out of battery during the interaction, failing to
complete a successful grasp). Of the 57 participants included
in our analysis, 20 were in the High-Granularity Interface
condition, 18 in the Low-Granularity Interface condition, and
19 in the No EUP condition. Participants’ age ranged from 18
to 50 (M = 23.77, SD = 6.33). 30 participants identified
as women, 26 as men, and 1 as non-binary. Among the
participants, 19 identified as White, 11 as South Asian, 11 as
East Asian, 9 as Hispanic, 7 as Black, 7 as South East Asian,
2 as Middle Eastern, and 2 as Other. Those who identified
with multiple ethnicities were double counted. No significant



differences in demographic variables were present across the
experimental conditions. A post-hoc power analysis showed
that 57 participants across 3 conditions would allow us to
detect effect sizes of η2p = 0.15 with a power of 0.80.

V. RESULTS

To assess the impact of different end-user programming in-
terfaces on user experience, we conducted analysis of variance
(ANOVA) tests, controlling for covariates including participant
age, gender, and familiarity with programming. Effect sizes
are reported using partial eta squared (η2p). Post-hoc pairwise
comparisons were performed using Tukey’s Honest Significant
Differences (HSD) tests. For the analysis of qualitatively coded
free-response labels, we utilized Chi-Square (χ2) tests of
independence and applied Bonferroni corrections for post-hoc
pairwise comparisons.

A. Interface Usage Summary

We first examined participants’ customization selections
using the Low-Granularity (LG) and High-Granularity (HG)
interfaces (see supplemental documents for detailed reports).
Participants in both conditions chose a wide range of cus-
tomizations, highlighting the need for personalization to ac-
commodate diverse preferences. Some examples include how
all 11 robot vocal personas were selected at least once by LG
users, and 9 out of 11 by HG users. Approximately 55% of
participants in both conditions adjusted the robot’s stopping
distance from the default 1.0 meter, and while 16.67% of LG
users kept the default movement speed of 0.3m/s, 64.17% of
HG users retained it, with most changes favoring faster speeds.

Moreover, LG users were more likely to modify the robot’s
behavior between interactions compared to HG users. Specif-
ically, 77.78% of LG users changed the robot vocal persona
compared to 18.75% of HG users, and similar trends were
observed for stopping distance (61.11% LG vs. 43.33% HG),
movement speed (66.67% LG vs. 48.33% HG), and talking
speed (66.67% LG vs. 33.75% HG). This increased will-
ingness to customize in LG users may be due to the lower
cognitive load of the interface, making it easier for participants
to engage in personalization.

B. Adherence to User Preferences

Our analysis revealed significant differences across the
experimental conditions (F = 7.85, p = 0.002, η2p = 0.20) for
how well the robot’s behavior aligned with user preferences,
shown in Figure 5a. Participants in the Low-Granularity Inter-
face condition (M = 5.39, SD = 1.25, p < 0.001) and the
High-Granularity Interface condition (M = 4.80, SD = 1.31,
p = 0.002) reported that the robot more closely adhered to
their preferences compared to those in the No EUP condition
(M = 3.19, SD = 1.52). However, there was no significant
difference between the High-Granularity and Low-Granularity
Interface conditions (p = 0.388).

Additionally, we found through coded responses to an
open-ended question that participants in the Low-Granularity
Interface condition overwhelmingly felt confident in making

Fig. 5: (a) Participants that used either the High Granularity or
Low Granularity EUP interface saw robot behavior that more
closely aligned with their preferences. (b) Participants that
used the Low-Granularity Interface enjoyed their interaction
with the robot the most. (**), and (***) denote p < 0.01, and
p < 0.001, respectively. Error bars show one standard error
from the mean.

changes (88.89%), compared to those in the High-Granularity
Interface (40%, χ2 = 9.92, p = 0.007) and No EUP (31.58%,
χ2 = 12.67, p = 0.002) conditions. There was no significant
difference between the High-Granularity Interface and No
EUP conditions (χ2 = 0.78, p = 0.6785).

These findings partially support H1, indicating that enabling
end-user programming generally leads to better adherence to
user preferences compared to no programming, though the ex-
tra level of detailed control provided by the High-Granularity
Interface did not yield significantly better adherence to user
preferences than the Low-Granularity Interface.

C. Perceived Social Agency

The broader concept of perceived social agency was cap-
tured using the following five constructs: Autonomy, Perceived
Agency, Social Presence, Social Intelligence, and Perceived
Intelligence (see Figure 6).

1) Autonomy: When asked if they perceived the robot to
be reacting to external stimuli with unscripted autonomous
actions that were not pre-programmed, participants reported
differences in perceived non-deterministic autonomy across the
experimental conditions (F = 3.05, η2p = 0.16, p = 0.007, see
Figure 6a). Participants in the Low-Granularity Interface con-
dition (M = 4.33, SD = 1.41) rated the robot as significantly
more autonomous than those in the High-Granularity Interface
condition (M = 2.85, SD = 1.90, p = 0.024). There was no
significant difference in perceived autonomy between the Low-
Granularity Interface condition and the No EUP condition
(M = 4.00, SD = 1.67, p = 0.819), though participants
in the No EUP conditions rated the robot as marginally
more autonomous than those in the High Granularity Interface
condition (p = 0.092).

2) Perceived Agency: For the aggregated measure of per-
ceived agency, participants reported significant differences



Fig. 6: Participants using the Low-Granularity Interface generally perceived the robot as having greater autonomy, agency,
social presence, social intelligence, and perceived intelligence than those using the High-Granularity Interface. (.), (*), (**),
and (***) denote p < 0.1, p < 0.05, p < 0.01, and p < 0.001, respectively. Error bars show one standard error from the mean.

across the experimental conditions (F = 3.90, η2p = 0.11,
p = 0.030, see Figure 6b). Participants in the Low-Granularity
Interface condition (M = 2.69, SD = 0.40) tended to
perceive the robot as having higher agency compared to
those in the High-Granularity Interface condition (M = 2.26,
SD = 0.62), although this difference did not reach statistical
significance (p = 0.060). No significant differences in per-
ceived agency were observed between the High-Granularity
Interface and the No EUP condition (M = 2.53, SD = 0.64,
p = 0.313) or between the Low-Granularity Interface and No
EUP condition (p = 0.661).

3) Social Presence: Social presence scores varied signifi-
cantly between conditions (F = 5.37, η2p = 0.13, p = 0.010,
see Figure 6c). Participants rated the robot as having greater
social presence in the Low-Granularity Interface condition
(M = 4.64, SD = 0.61) compared to the High-Granularity
Interface (M = 3.91, SD = 1.04, p = 0.037). No significant
differences were found between the Low-Granularity and No
EUP conditions (M = 4.33, SD = 0.93, p = 0.536),
nor between the High-Granularity Interface and No EUP
conditions (p = 0.310).

4) Social Intelligence: Social intelligence ratings showed
significant effects of interface type (F = 5.67, η2p = 0.12,
p = 0.008, see Figure 6d). Participants in the Low-Granularity
Interface condition viewed the robot as being the most socially
intelligent (M = 4.09, SD = 0.81), significantly more
than participants in the High-Granularity Interface condition
(M = 3.00, SD = 0.91, p = 0.0012). There were no
significant differences between the Low-Granularity Interface
and No EUP conditions (M = 3.56, SD = 0.94, p = 0.179),
nor between the High-Granularity Interface and No EUP
conditions (p = 0.125)

5) Perceived Intelligence: For participant perceptions of
the robot’s intelligence, participants reported significant differ-
ences across conditions (F = 3.37, η2p = 0.10, p = 0.047, see
Figure 6e). Participants in the Low-Granularity Interface con-
dition (M = 3.91, SD = 0.70) rated the robot as significantly
more intelligent than those in the High-Granularity Interface
condition (M = 3.22, SD = 0.72, p = 0.016) and the No

EUP condition (M = 3.22, SD = 0.80, p = 0.018). There
was no significant difference between the High-Granularity
Interface and No EUP conditions (p = 1.00).

Taken together, these findings suggest that participants in
the Low-Granularity Interface condition generally perceive the
robot as having greater social agency compared to participants
in the High-Granularity Interface condition. Contrary to our
hypothesis, participants did not think the robot in the No EUP
condition had greater social agency than the robot robot in the
Low-Granularity Interface condition despite not customizing
any part of its behavior. Thus, H2 is partially supported.

D. Overall User Experience

We observed significant differences across conditions for
the aggregated user experience metric (F = 6.30, p = 0.005,
η2p = 0.14), shown in Figure 5b. Participants in the Low-
Granularity Interface condition reported significantly better
overall user experience (M = 5.14, SD = 0.99) compared
to those in the High-Granularity Interface condition (M =
3.65, SD = 1.65, p = 0.009) and the No EUP condition
(M = 3.49, SD = 1.68, p = 0.004). No significant difference
was found between the High-Granularity Interface and the
No EUP conditions (p = 0.937). These findings support
H3, indicating that the Low-Granularity Interface provided the
most enjoyable user experience.

VI. DISCUSSION

This study set out to explore the trade-offs between the
level of control offered by EUP interfaces and the robot’s
perceived social agency, and how these factors impact over-
all user experience. By comparing a Low-Granularity EUP
Interface that offered broad, macro-level customizations, a
High-Granularity EUP Interface with detailed adjustments via
block-based programming, and a No EUP condition where no
customizations were possible, we explored how best to balance
between customization and the preservation of social agency.

A. Adherence to User Preferences

Our findings confirmed that enabling EUP significantly im-
proves the alignment of robot behavior with user preferences.



Both the Low-Granularity and High-Granularity Interfaces
outperformed the No EUP condition in adhering to user
preferences, supporting prior research on the value of person-
alization in fostering user satisfaction and engagement with
robots [22], [24]. However, contrary to expectations, the High-
Granularity Interface did not surpass the Low-Granularity
Interface in preference adherence, despite providing more
detailed controls. Qualitative data seem to suggest that this
may be due to the complexity and time required for novice
users, with participants stating, “this was a lot of effort for a
simple sequence” (p66) and “I trust my fellow humans...more
than...scratch blocks they created” (p23). This suggests that
while customizations can empower users, there is a thresh-
old where too much granularity can overwhelm rather than
empower, detracting from the user experience.

In contrast, the Low-Granularity Interface achieved similar
levels of adherence to user preference without the added
complexity and time commitment. As one participant from
the Low-Granularity Interface condition noted, “if it is any
more intense than the customization screen at the beginning
of the study, I do not feel confident making changes” (p8). This
suggests that the Low-Granularity Interface aligns well with
the level of customization complexity that novice users are
comfortable managing. However, it is important to note that
the study was conducted in a controlled setting with a one-hour
timeframe. Given more time and opportunities for multiple
iterations beyond the two allowed in our study, participants
might have fine-tuned the robot’s behavior more closely to
their preferences using the High-Granularity Interface.

B. Perceptions of the Robot

Our findings revealed that participants in the Low-
Granularity Interface condition perceived the robot as hav-
ing greater social agency–measured by autonomy, agency,
social presence, social intelligence, and perceived intelli-
gence—compared to the High-Granularity Interface condition.
At the same time, the Low-Granularity Interface improved
the robot’s behavior alignment with user preferences without
requiring users to specify every detail of the robot’s actions.
As one participant noted, “I would want to customize it to
do the things I’d like it to do, but I also don’t want to
have a need of doing so beyond a certain point. I don’t
want to micromanage social interactions; I would rather
program the robot to be polite and then have it auto-generate
responses in a conversation” (p42). This suggests that the
macro-level customizations offered by the Low-Granularity
Interface helped maintain the veil of social agency, keeping
the robot’s observable attributes within the average user’s
Level of Abstraction (LoA) [10], [67] without crossing into
the “developer’s LoA,” which the High-Granularity Interface
might have encouraged. By keeping users at a higher level of
interaction, the Low-Granularity Interface may have preserved
the robot’s perceived social agency, preventing the user from
being involved with the inner workings that could undermine
these perceptions.

Interestingly, our hypothesis that the No EUP condition
would result in the highest perceptions of social agency was
not supported. A plausible explanation is that the robot’s
lack of variability in behavior between the first and second
interactions led participants to view it as executing a fixed, pre-
programmed sequence, possibly crafted by the robot designers.
With no changes observed between the two interactions par-
ticipants experienced, the robot appeared less adaptive, which
likely diminished its perceived social agency. Comments from
participants in the No EUP condition like, “the robot is pre-
programmed with info I have no interest in and will not stop
on command” (p68) illustrate this perception, suggesting that
a lack of behavioral variation can make the robot feel less
agentic [10], [67], [68]. In real-world settings, where user
routines are not restricted by the study setup–such as users not
being required to accept the snack–or the robot not be con-
strained to engage in specific interactions dictated by research
protocols for consistency across participants, we anticipate that
a similar home assistant robot without customization options
would exhibit greater perceived social agency over time, as its
actions would naturally adapt to more varied user interactions
and contexts.

C. Overall User Experience and Wider Implications

Our findings indicate that the Low-Granularity Interface
offered the most engaging and satisfying overall user ex-
perience compared to both the High-Granularity Interface
and not having EUP at all. By balancing user customization
with the preservation of the robot’s social agency, the Low-
Granularity Interface facilitated interactions that were not only
better aligned with user preferences but also felt more socially
interactive and meaningful [15], [16]. This balance contributed
to a generally more enjoyable human-robot interaction expe-
rience [17], [18].

The broader implications of our study highlight the need
for EUP interfaces that empower users while maintaining
the robot’s social qualities. Designers should aim to create
programming interfaces that enable users to meaningfully
shape robot behaviors in a way that is intuitive and man-
ageable, avoiding overly granular controls that risk pushing
users into a developer’s level of abstraction–a perspective that
may feel complex and disengaging for typical users. Our
findings suggest a balanced approach to EUP interface design
for robot products, where user control is carefully calibrated to
preserve the robot’s social agency. This approach could guide
the development of more adaptable and user-friendly robots
that appeal to a broad range of users. By emphasizing this
balance, future robots may be better positioned to integrate
into the social fabric of our homes and communities, enriching
human experiences in nuanced and meaningful ways.
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